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In spite of enormous improvements in vehicle safety, roadway design, and operations, there is still an excessive
amount of traffic crashes resulting in injuries and major productivity losses. Despite the many studies on factors
of crash frequency and injury severity, there is still further research to be conducted. Tree and utility pole/other
pole related (TUOP) crashes present approximately 12 to 15% of all roadway departure (RwD) fatal crashes in the
U.S. The count of TUOP crashes comprise nearly 22% of all fatal crashes in Louisiana. From 2010 to 2016, there
were 55,857 TUOP crashes reported in Louisiana. Individually examining each of these crash reports is not a re-
alistic option to investigate crash factors. Therefore, this study employed text mining and interpretable machine
learning (IML) techniques to analyze all TUOP crashes (with available crash narratives) that occurred in Louisiana
from 2010 to 2016. This study has two major goals: 1) to develop a framework for applying machine learning
models to classify injury levels from unstructured textual content, and 2) to apply an IML framework that pro-
vides probability measures of keywords and their association with the injury classification. The present study
employed three machine learning algorithms in the classification of injury levels based on the crash narrative
data. Of the used modeling techniques, the eXtreme gradient boosting (XGBoost) model shows better perfor-
mance, with accuracy ranging from 0.70 to 24% for the training data and from 0.30% to 16% for the test data.
© 2021 International Association of Traffic and Safety Sciences. Production and hosting by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Although there have been major improvements in vehicle safety,
roadway design, and operations over time, the cost of traffic crashes in
terms of injury and productivity loss is still unreasonably high. There
has been extensive research conducted on crash frequency, injury se-
verity, and the influencing factors of thesemeasurements; nevertheless,
there is still furtherwork to be done. In the years 2014 to 2016, roadway
departure (RwD) crashes (a crash in which a vehicle leaves the desig-
nated traveled way) resulted in an average of 18,779 fatalities per
year, which make up approximately 53% of all traffic fatalities in the
U.S. [1]. Tree and utility pole/other pole related (TUOP) crashes repre-
sent approximately 12 to 15% of all RwD fatal crashes in the U.S. The
TUOP crashes in Louisiana represent 22% of all fatal crashes. Addition-
ally, from 2015 to 2016, TUOP crashes increased overall by 5%. In
many cases however, TUOP is not the first crash event. Therefore, fur-
ther investigation of crash reports is needed to determine the primary
contributing factor of the crash occurrence. From 2010 to 2016, 55,857
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TUOP crashes were reported in Louisiana. Individually examining each
crash report is not a realistic option. Innovative text mining tools are
the best alternative tool for this research.

The traditional approach to studying crash factors is to identify the
association between crash count and the road conditions, traffic charac-
teristics, and driver behavior. Recently, research focus has been directed
towards identifying the factors that majorly affect driver injury severity
in traffic crashes. Multiple methodologies have been used previously to
study injury severity. The traditional approachwith data analysis proce-
dures uses police-reported structured crash data to conduct crash data
analysis. Police crash reports generally contain a written description of
the crash occurrence, but in many cases, these crash narratives are not
stored electronically. Furthermore, the narratives are in free-text data
format, which requires expansive manual efforts in extracting data
from them. Due to the difficulties associated with investigating these
crash reports, there is a high likelihood of losing essential information
from these narratives. TUOP crashes typically involve a series of crash
events. Comprehending injury severity data and information is possible
with text mining algorithms. This study has two main objectives: 1) to
develop a context for applying machine learning models to classify
injury levels from unstructured textual content, and 2) to apply an in-
terpretable machine learning (IML) framework that can provide proba-
bility values of the keywords to classify injury types. This study
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employed machine learning algorithms such as random forest (RF),
support vector machine (SVM), and eXtreme Gradient Boosting
(XGBoost) to conduct an analysis on a TUOP crash dataset spanning
seven years (2010–2016) in Louisiana and classify each crash narrative
according to crash injury levels. IML techniques were then applied to
thenarratives to explain the terms and their associationswith the injury
level classification.

2. Literature review

Conventional traffic safety analysis can be divided into two broad
groups: crash count analysis and crash injury analysis. Interested re-
searchers can consult three major survey papers to understand the
state-of-the-art methods and future research scopes [2–4]. The key
methodology of most studies in these areas is identifying numerous
contributing factors and their relationships with crash occurrence or
crash severity. This section divides the literature review into two
major sections: 1) TUOP studies, and 2) crash narrative investigations.

2.1. TUOP studies

The National Highway Traffic Safety Administration published a re-
port [5] stating that run-off-road (ROR) crashes (a subset of RwD
crashes) represented approximately 65% of the total number of single-
vehicle crashes in the U.S. from 1991 to 2007. Furthermore, the Federal
Highway Administration published a study [6] on TUOP crashes,
reporting that TUOP roadside hazards are rarely treated. The study
also asserted that further extensive research is required to plan and
manage countermeasure design to decrease the severity of TUOP
crashes. In 1980 in theU.S., Jones and Baumexamined the factors of util-
ity pole crashes [7]. Another early study took place in South Australia
and found that 40% of all crashes recorded at least one fatality in
which the key harmful event is the collisionwith a roadside fixed object
[8]. In another study, Nilsson et al. [9] explored countermeasure design
in ROR crashes by conducting hierarchical agglomerative cluster analy-
sis. Al-Bdairi et al. [10] applied ordered random parameter probit model
to estimate the effects of a variety of variables in large-truck ROR
crashes. In a follow-up study, Al-Bdairi et al. [11] applied mixed logit
models to examine the effect of lighting conditions on large truck re-
lated ROR crashes. By applying logistic regression, Dissanayake and
Roy [12] evaluated the impacts of key contributing crash factors in
ROR crashes. In a later study, Dissanayake [13] researched the variables
that affect injury severity of ROR single-vehicle crashes, focusing on
crashes involving young drivers. In this study, the author found that nei-
ther severe weather conditions nor physical impairment (i.e., fatigue or
illness) had a significant effect on the severity of single-vehicle ROR
crashes. This discovery contradicted findings from previous studies
[14,15]. Alruwaished [16] studied the factors of ROR crashes where
the vehicle departed from the dedicated travel lane at a non-intersec-
tion area of the roadway and collided with either a fixed object or an-
other vehicle. Another study utilized classification and regression tree
(CART) approach to investigate variables that affect injury severity.
The study found that human error was the most crucial factor in ROR
and RwD crashes [17]. Watson et al. [18] explored the impacts of road-
sidefixed objects on traffic safety by analyzing crash indicator values for
roadway segments where roadside fixed objects are present and seg-
ments where there are no roadside fixed objects. The Maine Depart-
ment of Transportation conducted a study [19] and reported that the
most significant variables that contribute to utility pole crashes include
dark lighting condition, poor roadway condition, roadway curvature,
rural environment, driver inattention, speeding, and the location and
offset of utility poles. Dumbaugh [20] conducted an analysis of TUOP
crash site locations and identified the crash factors in an urban environ-
ment. Many studies have also devoted their efforts to studying the
safety effects of various countermeasures.
2

2.2. Incident narrative investigations

Text mining has demonstrated its usefulness in detecting valuable
information from a large text based dataset. It is particularly used to
find patterns and peculiarities in data, identify contributing factors,
and develop predictive models used for guidance in real-world scenar-
ios [21,22]. Previous studies employed different applications of natural
language processing to gain insights from occupational incident reports
[23–30], health care reports [31–33], automobile crash reports [24–
33,44], and others [21,22].

In recent years, researchers started applying text mining for vehicle
crash data analysis in the transportation research area. Chatterjee
applied a connectionist-based model to classify free-text incident
narratives [34]. Das et al. [35] applied both exploratory text mining
and empirical Bayes (EB) data mining were applied in gaining associa-
tions between vehicle condition and automotive safety. Least Squares
techniques was applied to predict railroad crash cost accurately and de-
termine the contributing factors [41]. Previous researchers also used ex-
tensive interview data analysis [36], logistic regression [26,27,38,39],
Haddon matrix [28,29,42], clustering [23,42], naïve Bayes [26,27,32],
and latent Dirichlet allocation [43].

In summary, text mining and advancedmodels offer an extra poten-
tial to develop standardize incident narrative text analysis and reduce
human error in crash and injury investigation. Table 1 provides a sum-
mary of previous studies on incident narrative reports.

3. Methodology

3.1. Data

The current study collected seven years, from 2010 to 2016, of traffic
crash data from Louisiana. Louisiana crash data provides five conse-
quent harmful events. The following filter is applied to identify the
TUOP crashes:

Most harmful event = Tree (JJ) or utility pole (KK) or other poles
(NN) OR First harmful event = Tree (JJ) or utility pole (KK) or other
poles (NN) OR Second harmful event = Tree (JJ) or utility pole (KK)
or other poles (NN) OR Third harmful event = Tree (JJ) or utility pole
(KK) or other poles (NN) OR Fourth harmful event = Tree (JJ) or utility
pole (KK) or other poles (NN)

After the filter was applied, the dataset contained 55,857 crash level
data. The data summary shows that TUOP represents approximately
80% of the “most harmful” event scenarios. Furthermore, trees account
for to 75% of TUOP crashes in the most harmful event scenarios. Table
2 displays yearly TUOP crashes by severity types (K = fatal, A = inca-
pacitating injury, A = non-incapacitating injury, B = possible injury,
O = no injury). Over that time period, the number of total crashes has
increased by 6%. However, the number of TUOP fatal crashes has actu-
ally decreased by 8% from 2010 to 2016. Overall, in that time period,
TUOP fatal crashes represent approximately 20% of all fatal crashes in
Louisiana.

3.2. Machine learning algorithms

Machine learning is a technique of training machines to learn pat-
terns and associations from data and to make forecasts based on the
knowledge learned throughout the training process. There are two
major types ofmachine learning: supervised learning and unsupervised
learning. A machine learning algorithm is essentially a set of rules that
the machines must follow in order to learn and achieve a specific goal.
A machine learningmodel can predict, classify or can fulfill other inten-
tions based on the problem type. In contrast to machine learning,
standard statistical modeling uses statistical equations to discover
links between variables. Themost significant advantage of conventional
statistical modeling is its interpretability. However, one shortcoming
of this method is its pre-determined assumptions must be made



Table 1
Studies on Incident Narrative Reports.

Area of study Dataset Approach Key findings Ref

Research
collaboration
and funding

14,000 project information from Research in
Progress database by U.S. Department of
Transportation (DOT) and State DOTs

Neural network Agency's interest in various subject areas varies every year. [21]

Document
collection

9/11 attack report and aviation accident reports
from 2001 to 2003 by the U.S. National
Transportation Safety Board (NTSB)

Concept chain queries Find the most crucial evidence trails across documents to
describe connections between two topics of interest.

[22]

Occupational
accidents

143 serious occupational accident with
movement disturbance (OAMD) scenarios in
construction and metallurgy sectors

Bayesian network model;
Clustering

Extracted eight scenarios and 30 accident generic factors
from 143 serious occupational accident narrative texts.

[23]

Occupational
accidents

17,000 injury narratives between 2002 and 2004
extracted from workers' insurance claim

Fuzzy and naïve Bayesian models Classification accuracies by the models compared to manual
efforts

[24]

Occupational
accidents

535,605 injury narratives regarding work-related
ladder fall fractures.

Descriptive statistics Provide relevant additional information on case
identification, mechanisms, causes and outcomes for a severe
injury.

[25]

Occupational
accidents

7200 accident narratives extracted from
compensation claims from 2001 to 2009 from
Ohio Bureau of Workers' Compensation (OHBWC)
database

Naïve Bayes; Logistic regression
model

The logistic model performed better than the naïve Bayes
model. Inclusion of two-word sequences as opposed to single
keywords marginally improved the overall accuracy

[26]

Occupational
accidents

30,000 injury narratives extracted from workers'
compensation (WC) claim

Naïve Bayes; Support Vector
Machine (SVM); Logistic regression
model

SVM performs better than other models for large dataset.
Classify the large set of claim data into Bureau of Labor
Statistics (BLS) OIICS event codes.

[27]

Occupational
accidents

4000 injury reports during the construction of
Denver International Airport (DIA)

Haddon matrix Developed coded dataset and a set of coding rules from
injury reports to help reviewers interpret the narrative text.

[28]

Occupational
accidents

69 Kentucky Fatality Assessment and Control
Evaluation (FACE) agricultural tractor fatality
reports from 1994 to 2004

Haddon matrix; Univariate and
multivariate logistic regressions
model

Identify influential factors to tractor fatalities [29]

Occupational
accidents

National datasets of occupational fatalities
Australia, United States and New Zealand

Text search technique Narrative coding was more useful for some types of injury
than others.

[30]

Health care Narrative text of traumatic brain injuries (TBIs) in
the National Electronic Injury Surveillance System
(NEISS)

DUALIST- an interactive machine
learning program

DUALIST reduces time frame from a few days to minutes
after nearly sixty minutes of training.

[31]

Health care 30,000 injury narratives extracted from workers'
compensation (WC) claim

Naïve Bayesian model Overall accuracy is 87%; positive predictive values across all
two-digit BLS event categories.

[32]

Health care Electronic health records from the UK General
Practice Research Database (GPRD)

Semi-supervised Set Covering
Machine (S3CM) model;
Transudative Vector Support
Machine (TVSM).

S3CM works better than TVSM and fully supervised SCM for
coronary angiogram detection.

[33]

Vehicle crashes 3680 accident reports Connectionist based model; Fuzzy
Bayes model, Keyword model

Connectionist and fuzzy Bayes model better performed than
keyword model

[34]

Vehicle defects National Highway Traffic Safety Administration's
(NHTSA) vehicle complaint and Fatality Analysis
Reporting System (FARS)

Exploratory text mining; Empirical
Bayes (EB)

Several key association-patterns [35]

Vehicle crashes
(inattention
and
distraction)

856 crash report from Australian National Crash
In-depth Study during the period of 2000 to 2011

In-depth analysis using interviews
and external verifications

Classify five types: restricted attention, incorrectly
prioritized attention, neglected attention, cursory attention,
and diverted attention.

[36]

Rail crashes Rail accidents report from 2001 to 2012
maintained by Federal Railroad Administration
(FRA)

Probabilistic Topic Modeling; Latent
Dirichlet Allocation (LDA); Random
Forest (RF); Partial Least Squares

Text mining can improve understanding of the contributing
factors.

[37]

Vehicle crashes
(speeding)

Crash narrative texts from 2012 to 2014 by the
state of Massachusetts DOT

Logistic regression model Prediction accuracy is 53%. [38]

Vehicle crashes
(bicycle)

Bicycling and other sports injury narratives by
U.S. National Electronic Injury Surveillance
System (NEISS), 2005–2011

Text algorithm, Logistic regression
model

Demonstrated the possible use of simple text-search
algorithms to detect supplementary variables in
unstructured data.

[39]

Vehicle crashes Crash report data in Queensland from year 2004
and year 2005

Clustering; Leximancer- a tool
based on the Bayesian theory

Higher likelihood of the second vehicle being involved in a
crash; a right-turn crash as opposed to a left-turn crash;
person's inability to control speed or stop resulting in a
rear-end crash; and multiple vehicles being involved in an
intersection crash.

[40]

Vehicle crashes Accident narrative texts from Liberty Mutual
Insurance Company in 1991

Text mining; Haddon injury
epidemiology model

About 26% of the crashes involved a stopped or slowing
vehicle in the work zone. With 31% of the crashes, rear-ends
were the most common crashes.

[42]

Rail crashes Railroad equipment accident 2005–2015 LDA Both LDA and clustering produced equivalent results [43]
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in the first place, which could be questionable. On the other hand,
majority of the machine learning model lacks substantial amount of
interpretability.

3.2.1. RF
Random forest, a supervised classification algorithm, generates a

comprehensive set of decision trees by subsetting the training dataset
and accumulates the prediction from each tree using voting. A single de-
cision tree works well on the training dataset. However, it cannot
3

always provide an accurate prediction. RandomForest is built on several
decision trees with randomly selected samples and variables [45,46]. To
create a random forest, there are several steps:

(1) Create a bootstrapped dataset by randomly selecting several
samples in the original dataset. Each sample can be selected
more than once.

(2) Create a decision tree using the bootstrapped dataset, but,
at each node, only select a random subset of variables (columns)



Table 2
Crash Injury Counts by Severity Levels.

Year K A B C O All

2010 154 159 1098 2307 4022 7740
2011 153 184 1124 2258 4055 7774
2012 137 168 1101 2368 4031 7805
2013 157 149 1065 2256 4338 7965
2014 163 162 1068 2360 4200 7953
2015 158 180 1104 2446 4487 8375
2016 141 171 1109 2401 4423 8245
Grand total 1063 1173 7669 16,396 29,556 55,857
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to determine which one is the best one to separate the
samples.

(3) Repeat step (1) to (2) many times. This will result in several de-
cision trees that form a random forest.

(4) For the test dataset, run each sample through all decision trees in
the random forest and summarize the results. The final predic-
tion of a test sample is determined by the result with the most
vote from RF.

The parameters in RF are the total number of trees, the number of
randomly selected variables at a node split, and the maximum tree
depth. The reason for randomly selecting a subset of the variables is to
avoid the correlation of the trees: if one or a few features are very strong
predictors for the target, these featureswill be selected to split examples
into many trees. This will result in many correlated trees in the random
forest. One of the advantages of RF is that by building multiply samples
of the original dataset, it prevents overfitting problems. The algorithm is
effective in handling missing values.

3.2.2. SVM
Support VectorMachine is based on finding an optimumhyperplane

in a high dimensional space. In this case, a hyperplane is a classifier to
classify data into two groups. The goal is to select an optimal hyperplane
with the maximum possible margin between two groups or classes.
Margin is the closest distance between the nearest data points from
two sides. The maximum possible margin provides chances of higher
prediction accuracies [47]. The equation of the hyperplane can be writ-
ten as:

wx−b ¼ 0

For xi in one class, it should satisfy:

wxi−b≤−1

For xi in the other class, it should satisfy:

wxi−b≥1

w is a real-valued vector of the same dimensionality as the input feature
vector x. b is a real number.

Margin can be calculated as:

2
‖w‖

To get themaximummargin, ‖w‖ should beminimized. However, in
the case where many outliers exist in the opposite class, if the hyper-
plane is still drawn based on the nearest data points from two sides,
many future data will be classified into the wrong class. Here we need
a soft margin that can tolerate some outliers be classified into the oppo-
site class. Then, for further data, they will be less likely to be classified
into the wrong class. The hyperplane is drawn at the center of this soft
margin. There are many methods, including minimizing cost function
4

and cross validation, to determine the optimum soft margin. With re-
spect to multiclass problem, SVM uses different kernel functions to
transform data into a higher dimension that can be classified into two
groups where a hyperplane can be found. The advantages of SVM clas-
sifier is that it can handle outlier and overlapping problems. Moreover,
when the original dataset does not have a clear boundary which can di-
vide the data into two classes. SVM provides a good solution by
transforming the dataset into a higher dimension.

3.2.3. XGBoost
XGBoost is one of the most popular Gradient Boosting method. Gra-

dient boosting is a regression model to make predictions based on
several decision trees. The first step of gradient boost is to select an
initial prediction f0. Assuming there is a dataset {(xi,yi)}i=1

n , the initial
prediction is the average of yi, Then a new label will be added into
the training dataset which is called pseudo residual byi and is calculated
as: byi ¼ yi− f 0.

Then, use the training dataset with pseudo residuals to build a new
decision tree model, f1. Now the new prediction for each sample be-
comes to f = f0 + af1. Where a is the learning rate.

Then, repeat the above process and get the second decision trees f2
based on the pseudo residuals. Then the new prediction becomes to
f= f0+ af1+ af2. Repeat this process until themaximumnumber of de-
cision trees [48,49].

For XGBoost algorithm, different from gradient boosting, it creates a
XGBoost tree at each step. At each root of a XGBoost tree, a similarity
score is calculated as:

Sum of residualð Þ2
number of residualþ λ

λ is regularization parameter to prevent overfitting. The default value is
0.

At each root, the algorithmpicks the optimum threshold by choosing
the one which results in the maximum Gain. Gain is calculated as:
Gain = sum of the similarity scores at all leaves − similarity score at the
root.

After reaching the maximum number of leaves, the next step is to
prune the XGBoost trees. A parameter Gamma (user defined tree com-
plexity parameter) is introduced. For the roots where Gain is smaller
than gamma, this root will be deleted. Parameter Gamma is used to pre-
vent overcomplexity. Finally, for all remaining leaves in a XGBoost tree,
the output value is calculated as

Sum of residualð Þ2
number of residualþ λ

New prediction is calculated as:

new prediction ¼ previous predictionþ a⁎output

Then based on the new residual, create a new XGBoost tree. Repeat
this process until reaching themaximumnumber of trees or new resid-
ual is very small.

3.3. Interpretable machine learning (IML)

The supervised machine learning (IML) algorithms learn from the
training data. They are trained to predict based on the training cases.
In a low-risk scenario such as a movie recommendation system, a
wrong prediction is acceptable. On the other hand, the classification
task for a self-driving car to identify a pedestrian is an example of a
high-risk task. In many cases, a wrong prediction for high-risk tasks is
not affordable. Therefore, there is a need to know how the model
made its decision. Interpretability provides justification of the devel-
oped models. Moreover, it is important to know about the biases in



Table 4
Accuracies by different algorithms.

Dataset Severity type XGBoost SVM RF

Train data K 0.007 0.002 0.000
A 0.027 0.013 0.023
B 0.135 0.130 0.091
C 0.240 0.221 0.203
O 0.206 0.203 0.201

Test data K 0.003 0.000 0.000
A 0.013 0.005 0.000
B 0.080 0.031 0.023
C 0.163 0.110 0.117
O 0.159 0.109 0.101
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the model obtained from the training data. Interpretability works as a
debugging tool to identify the biases. Better interpretability opens op-
tions to fix the model or to make it more robust [50–52].

3.4. Crash narrative framework

The current study developed an IML framework in solving the re-
search problem. The steps are the following:

• Step 1: Data compilation. This study collected electronic format of the
crash narrative data in a structured dataset in spreadsheet. In the re-
cent years, some U.S. states have started the procedure of transferring
the paper crash reports into electronic versions. For example, Louisi-
ana now maintains an electronic database of crash reports.

• Step 2: Data cleaning. Text mining algorithms are used to perform
data cleaning. Redundant words can be removed with available lexi-
cons. However, availability of transportation safety specific dictionar-
ies would be helpful in reducing noise from textual contents
associated with transportation safety.

• Step 3: Apply predictive modeling. Many recent studies have applied
differentmachine learning tools for solving the classification problem.
The best model can be selected by evaluating various machine learn-
ingmodels according to their misclassification rates. This study evalu-
ated three differentmachine learningmodels to select the best option.

• Step 4: Apply IML model. Several IML techniques have been intro-
duced in recent years such as partial dependence plot (PDP), and
local interpretable model-agnostic explanations (LIME) [53,54]. This
study employed LIME to explain some randomly selected crash
narratives.

4. Results and discussions

The final dataset used for this analysis contains 23,416 TUOP crashes
(around 50% of all TUOP crashes) and their crash narratives (see Table
3). However, the database has many missing values in the crash narra-
tive columns. Additionally, some entries contain redundancies in the
crash narrative columns (for example, ‘see supplement narrative’, ‘see
attached narrative’, ‘see narrative supplements’), which were subse-
quently excluded in the final dataset preparation.

Standard text mining steps such as removal of stopwords and punc-
tuations, removal of numbers, and lemmatization, before applying the
machine learning algorithms to reduce noise in the dataset. The most
common issue in text mining is the abundance of redundant informa-
tion in the form of words. Domain specific lexicon is needed to reduce
the number of redundancies and the associated noise. Furthermore,
words or word fragments with similar meanings should be condensed
into the same term (known as lemmatization) to reduce misclassifica-
tions. The final datasetwas preparedwith the performance of a basic re-
dundant word removal. Future studies can perform further robust data
cleaning to improve model precision.

As mentioned earlier, this study used three different machine learn-
ing algorithms to perform the analysis. The researchers provide a brief
explanation of these algorithms. Table 4 lists themisclassification or ac-
curacy rates for each algorithm. The training and test data are used from
thedataset described in Table 3. The values in Table 4 show that the pre-
diction accuracies are higher in XGBoost algorithm. The accuracy of the
XGBoost algorithm ranges from 0.70 to 24% for the training data and
Table 3
Dataset with crash narratives.

Dataset Count K A B C O

Train data 15,610 169 411 2224 3994 8812
Test data 7806 87 210 1069 2013 4427
Total 23,416 256 621 3293 6007 13,239
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0.30 to 16% for the test dataset. The prediction accuracies in the test
data are usually smaller than the accuracies of the training dataset as
the test data was not included while developing the models. This
study can be considered as a starting point of IML implementation in
crash narrative analysis. The prediction accuracies can be improved by
using additional structured information such as collision type, number
of vehicles, final location of the vehicles and other relevant information.
The current analysis is limited to use only crash narrative information to
determine the injury type. Additionally, imbalanced data issue was not
handled in this study to provide the accuracy results from the original
number of crash reports based on different injury levels.

It is important to note that confusionmatrix provides understanding
of themodel performance in the form of misclassification measures. On
the other hand, model explanation provides justification of the models
in the form of interpretability. This paper employed a recent IML algo-
rithm, known as LIME, to provide contexts of the prediction results
[53]. Open source R package ‘lime’ was utilized in this study [54]. IML
provides interpretation of randomly selected cases with some explana-
tion parameters such as probability and explanation fit. Thesemeasures
are different from accuracies used in Table 4. Table 4 indicates overall
performance measures of the used algorithms. The explanation param-
eters in Fig. 1 indicates the performance of the algorithm for a randomly
selected case. For instance, six cases of non-debilitating crash narratives
were selected from the test data (see Fig. 1). The interpretation of each
of six random cases in Fig. 1 is below:

• Case: indicates randomly selected case number.

• Label: 1 indicates that the XGBoost model calculates that the crash is
non-incapacitating injury and 0 implies that the crash is not non-inca-
pacitating injury.

• Probability: indicates probability of a case to be a particular label (ei-
ther 1 or 0) by XGBoost

• Explanation Fit: indicates the best fitmeasures for that particular case.
The higher is the value, the better is the fitness.

The explanation models considered the top twenty words with pre-
diction probability measures. The explanation plots only show top four
keywords and their probability measures in the form of bar plots. Fig. 1
shows that only Case 2 is a non-incapacitating crash. For example, Case
1 illustrates that the probability is 60% as non-incapacitating. Thewords
in the crash narrative identify the injury level are ‘hospital,’ ‘bleeding,’
‘head,’ and ‘highway.’ Compared to the term ‘highway,’ the other three
words perform better in classifying the injury level. Case 2 illustrates
that the probability is 53 as non-incapacitating injury crash. The
words with high probability measures are ‘transported,’ ‘hospital,’
‘lady,’ and ‘damage.’ The general explanation comes from some of the
key words and their associations with a non-incapacitating crash. The
terms ‘damage,’ ‘notified,’ and ‘advised’ are associated with the out-
comes of non-incapacitating crash narratives. Conversely, some terms
like transported and hospital are making balance in determining the



Fig. 1. Explanations of six randomly chose crash narratives with non-incapacitating severity (label = 1).
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weightage towards the classification determination. The findings of this
study are in line with a recent study on TUOP crashes [55].
5. Conclusions

This study considered all TUOP crashes (with crash narratives in
electronic format) in Louisiana over a seven-year period (2010–2016).
The current research has two main contributions: 1) it developed a ap-
plied framework to utilize machine learning models to categorize crash
injury types from unstructured crash reports, and 2) it developed an
IML framework that can interpretations on the developed algorithms
so that users understand the key factors that are associated with the in-
jury levels. The framework created in this study has the potential to be
utilized in other traffic crash related categorization (i.e., type of colli-
sion) based on crash narratives. Many of the crash narratives that
were studied were previously unused. This study also demonstrated
that, using the XGBoost model, these crash narratives can be used to
identify injury severity with an accuracy rate ranging from 0.30 to
24%. The present study should be used as a jumping off point for future
6

studies that may implement IML and use it as a key research tool for fu-
ture crash narrative data analysis.

The current study design does have limitations, including at least
two major ones that should be addressed. Firstly, the injury prediction
accuracy rates are not high due to the standalone usage of crash narra-
tive report contents. Future studies should focus on the development of
a robust transportation safety lexicon on the stop words and dominant/
redundant words to help reduce classification errors. Additionally, pre-
diction accuracies can be improved with inclusion of additional meta-
data from the structured crash information. Secondly, the current
paper lacks explanations and descriptions of all injury levels related to
TUOP crashes. The current research team will continue to pursue re-
search focusing on data extraction from crash narrative data of TUOP
crashes.
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